Ionic Association of Mixed Nickel(II) Chelates in Alcohols, Ketones, and Nitrobenzene

Kazuaki Iто* and Yuroku Yамамото†

Department of Environmental Science, Faculty of Engineering, Hiroshima University, Saijo, Higashi-Hiroshima 724

†Environmental and Safety Engineering Department, Fukui Institute of Technology, Gakuen, Fukui 910

(Received December 26, 1988)

The conductances of mixed nickel(II) chelates, [Ni(acac)(N,N,N',N'-tmen)]X (where acac=2,4-pentane-dionato, N,N,N',N'-tmen=N,N,N',N'-tetramethylethylenediamine, and X=ClO₄ or NO₃), in alcohols {ethanol (EtOH), 1-propanol (n-PrOH), 2-propanol (i-PrOH), and 1-butanol (n-BuOH)}, ketones {acetone (Me₂CO), methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK)}, and nitrobenzene (PhNO₂) were measured at 25 °C. The obtained ionic association constants (K_a) of [Ni(acac)(N,N,N',N'-tmen)]ClO₄ which were derived by using the extended Fouss–Hsia function indicated that (1) the perchlorate complex is a normal type of uni-uni-valent electrolyte and (2) it is more dissociated than [Co(acac)₂(N,N,N',N'-tmen)]ClO₄ in EtOH, n-PrOH, and n-BuOH. Walden products of the cations suggest that the nickel(II) chelate cation in the alcohols is present as an octahedral form with the coordination of two solvent molecules. On the other hand, K_a of [Ni(acac)(N,N,N',N'-tmen)]NO₃ are much larger than those of [Ni(acac)(N,N,N',N'-tmen)]ClO₄. This can be ascribed to the coordination of a nitrate ion to the nickel(II) ion. The effect is large and approximately the same in the ketones and PhNO₂, though small in EtOH, n-PrOH, and n-BuOH due to the coordination of solvent molecules.

(1)

Since the central metal ion of a quadratic-planar chelate cation is available to interact with solvents and anions, the complex offers interesting information which helps in understanding solute-solvent interactions different from those of octahedral complexes. However, very little attention have been paid to ionic association, 1) although there have been a number of studies concerning axial interaction by solvents with coordinating ability.

In this study, in order to obtain information on the ionic association of quadratic-planar complexes, the conductances of nickel(II) chelates, [Ni(acac)(N,N,N',N'-tmen)]X (acac=2,4-pentanedionato, N,N,N',N'-tmen=N,N,N',N'-tetramethylethylenediamine, and X⁻=ClO₄⁻ or NO₃⁻) were measured in some alcohols and ketones as well as nitrobenzene. The conductance measurement is a useful tool for determining the ionic association constant and size of solvated- and coordinated-chelate cations.

It is well known that the color of the mixed nickel(II) chelate, [Ni(acac)(N,N,N',N'-tmen)]ClO₄, which was prepared successfully by Fukuda and Sone,²⁾ changes abruptly from red to green on varying the solvent basicity. This has been ascribed to an equilibrium between two forms, one quadratic-planar (diamagnetic low-spin) and the other octahedral (paramagnetic hign-spin),

$$[Ni(acac)(N,N,N',N'-tmen)]^{+} + 2solvent \Longrightarrow (red)$$

$$[Ni(acac)(N,N,N',N'-tmen)(solvent)_{2}]^{+}.$$

As for the nitrate complex, on the other hand, the NO₃⁻ ion acts as a bidentate ligand and a counter anion in non-coordinating and strongly coordinating

solvents, respectively.2)

Since the alcohols and ketones in this study have similar basicities, but different dielectric constants and steric structures, the equilibrium of ionic association may be different from each other. Nitrobenzene, which is an inert solvent in basicity, was selected for a comparison. The obtained conductance parameters were compared in detail with those of an octahedral complex $[\text{Co}(\text{acac})_2(N,N,N',N'-\text{tmen})]\text{ClO}_4$ in the solvents, 3-5) thus elucidating such solvent effects as solvent basicity, steric factor, and dielectric constant on ionic association.

Experimental

Material. [Ni(acac)(N,N,N',N'-tmen)]ClO₄ was synthesized and recrystallized according to a published procedure,²⁾ followed by vacuum drying at ca. 50 °C. Calcd. for NiC₁₁-H₂₃N₂ClO₆: C, 35.38; H, 6.21; N, 7.50%. Found: C, 35.10; H, 6.43; N, 7.67%.

Ni(acac)(N,N,N',N'-tmen)(NO₃) was synthesized according to a published procedure,²⁰ recrystallized from 2-propanol, and then vacuum dried at ca. 50 °C. Calcd. for NiC₁₁H₂₃N₃O₅: C, 39.32; H, 6.90; N, 12.51%. Found: C, 39.54; H, 7.01; N, 12.50%.

Ethanol (EtOH), 1-propanol (*n*-PrOH), 2-propanol (*i*-PrOH), acetone (Me₂CO), methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and nitrobenzene (PhNO₂) of reagent grade were purified as described previously.^{3–5)} 1-Butanol (*n*-BuOH) was refluxed over calcium oxide and fractionally distilled.

Apparatus. The instrumentation and procedure used for the conductance measurements were described previously.³⁰

Results

(A)[Ni(acac)(N,N,N',N'-tmen)]ClO₄. The measured molar conductances, Λ (S cm² mol⁻¹) and the corresponding concentrations, C (mol dm⁻³) are given

Table 1. Molar Concentrations (C/mol dm⁻⁸) and Molar Conductances (A/S cm² mol⁻¹) of [Ni(acac)(N,N,N',N'-tmen)]ClO₄ in Alcohols, Ketones, and Nitrobenzene at 25 °C

EtC	OH	n-Pr	·OH	i-Pı	ОН	n-Bu	uOH
$C/10^{-4}$	Λ	$C/10^{-4}$	Λ	$C/10^{-4}$	Λ	C/10-4	Λ
30.918	39.541	42.326	15.818	42.095	11.007	50.466	8.319
23.791	41.027	25.114	17.659	36.196	11.529	32.994	9.292
17.842	42.540	20.547	18.358	28.508	12.366	22.941	10.150
13.524	43.745	16.396	19.120	23.515	13.092	16.488	10.936
10.587	44 .768	11.807	20.184	18.959	13.904	12.529	11.529
7.6498	46.005	7.8290	21.405	13.968	15.080	8.0525	12.565
5.8780	46.882	5.5427	22.314	9.6619	16.496	4.4196	13.784
4.9481	47.44 4	3.5231	23.312	6.6765	17.922	2.0132	15.092
_	_	2.4217	24.055	4.1567	19.616		_

Me	₂ CO	M	EK	MI	BK	Phi	NO_2
C/10-4	Λ	$C/10^{-4}$	Λ	$C/10^{-4}$	Λ	C/10-4	Λ
46.640	141.58	36.869	97.267	22.376	40.685	42.344	30.104
29.550	150.66	28.905	101.64	16.698	44.162	35.410	30.570
15.930	161.47	22.970	105.62	12.430	47.850	28.594	31.090
12.212	165.69	17.164	110.51	8.9069	52.267	21.100	31.758
9.5289	169.50	13.074	115.21	5.9929	57.650	15.203	32.387
5.6724	176.12	9.3209	120.69	4.3787	62.032	10.543	33.006
4.3342	179.06	7.1014	124.74	2.9139	67.716	7.8916	33.408
_		4.6619	130.38	1.9400	73.186	5.1132	33.908
_	_	2.8327	136.10	0.9179	82.470	3.3470	34.323

Table 2. Solvent Parameters

Solvent	ε	η/mPa s	DN	AN
EtOH	24.33	1.082	20	37.9
$n ext{-} ext{PrOH}$	20.45	1.948	19.6	37.3
i-PrOH	19.41	2.078	_	33.5
n-BuOH	17.45	2.589	_	36.8
Me ₂ CO	20.56	0.3052	17	12.5
MEK	18.01	0.3803	_	
MIBK	12.8	0.5478	_	
PhNO ₂	34.82	1.847	4.4	14.8

in Table 1. In EtOH, a slight increase in conductivity with time (ca. 0.1%/h) was observed. Therefore, a small correction was made by extrapolating to time zero. The data were analyzed by the Fuoss-Hsia function with Fernández-Prini coefficients and $E=E_1\Lambda_0-2E_2$,6

$$\Lambda = \gamma (\Lambda_0 - SC^{1/2}\gamma^{1/2} + EC\gamma \log C\gamma + J_1(d)C\gamma + J_2(d)C^{3/2}\gamma^{3/2}),$$
 (2)

where the symbols have their usual meanings. The ionic association constant K_a can be expressed as

$$K_{a} = (1 - \gamma)/\gamma^{2} C f_{\pm}^{2}. \tag{3}$$

The mean ionic activity coefficient f_{\pm} is given by the extended Debye-Hückel equation,

$$-\log f_{\pm} = AC^{1/2}\gamma^{1/2}/(1 + BdC^{1/2}\gamma^{1/2}). \tag{4}$$

The method for fitting in terms of Λ_0 , K_a , and ionsize parameter d was described previously.³⁾ The standard deviation σ_{Λ} is defined as

$$\sigma_{\Lambda} = \left[\Sigma (\Lambda_{\text{calcd.}} - \Lambda_{\text{obsd.}})^2 / (n-3) \right]^{1/2}, \tag{5}$$

where n is the number of experimental points. The dielectric constant (ε) and viscosity (η in mPa s) of the solvents^{3,5,7-12}) used in this study for analyses are given in Table 2, together with the donor number (DN) and acceptor number (AN) as measures of solvent basicity and acidity, respectively.¹³⁾ The obtained conductance parameters are given in Table 3. The limiting conductances (λ_0^+ /S cm² mol⁻¹) and Walden products (λ_0^+ - η /S cm² mol⁻¹ 10⁻¹ Pa s) of the nickel(II) chelate cation were obtained from the limiting conductances of the perchlorate ion, λ_0^- (ClO₄⁻): in EtOH, 32.04;⁵⁾ in n-PrOH, 16.42;⁷⁾ in i-PrOH, 15.24;⁸⁾ in n-BuOH, 11.22;⁹⁾ in Me₂CO, 118.35;¹⁰⁾ in MEK, 93.0;⁵⁾ in MIBK, λ_0^- - η =0.34;⁵⁾ in PhNO₂, 20.9.¹²⁾

(B)[Ni(acac)(N,N,N',N'-tmen)]NO₃. The molar conductivities of [Ni(acac)(N,N,N',N'-tmen)]NO₃ in the alcohols, the ketones, and PhNO₂ are given in Fig. 1. Since the conductivities are extremely small, due to a coordination of the nitrate ion to the nickel(II) ion, it is impossible to obtain Λ_0 and, consequently, K_a using the extended Fuoss-Hsia function (Eq. 2).

Thus, only K_a was estimated from Eq. 3, in which the fraction of electrolyte present as ions γ is simply expressed in the form

$$\gamma = \Lambda/(\Lambda_0 - SC^{1/2}\gamma^{1/2}), \tag{6}$$

where Λ_0 of [Ni(acac)(N,N,N',N'-tmen)]NO₃ was obtained from λ_0^+ ([Ni(acac)(N,N,N',N'-tmen)]+) in Table 3 and λ_0^- (NO₃⁻) from the literature.^{12,14–16)} The activity coefficient f_{\pm} was estimated by using Eq. 4 and

PhNO₂

 35.85 ± 0.01

0.007

7.6

Solvent	Λ_0	λ ⁺ ₀	$\lambda_0^+ \cdot \eta$	$K_{\mathbf{a}}$	d	σ_{A}
Solvent	S cm² mol-1	S cm ² mol ⁻¹	S cm ² mol ⁻¹ 10 ⁻¹ Pa s	dm³ mol-1	10 ⁻¹ nm	. 0/1
EtOH	52.55±0.08	20.51	0.222	145± 10	13.8	0.05
n-PrOH	26.98 ± 0.02	10.56	0.206	389 ± 11	14.3	0.02
i-PrOH	26.52 ± 0.14	11.28	0.234	1160 ± 80	15.4	0.02
n-BuOH	17.58 ± 0.03	6.36	0.165	749 ± 16	16.0	0.03
Me ₂ CO	199.0 ± 0.1	80.6	0.246	162± 3	12.9	0.09
MEK	154.7 ± 0.2	61.7	0.235	382 ± 28	13.2	0.11
MIBK	101.2 ± 0.4	_	0.21	2900±100	17.5	0.15

0.276

Table 3. Conductance Results for [Ni(acac)(N,N,N',N'-tmen)]ClO₄ in Alcohols, Ketones, and Nitrobenzene at 25 °C

Table 4. Limiting Conductances and Ionic Association Constants for [Ni(acac)(N,N,N',N'-tmen)]NO₃ in Alcohols, Ketones, and Nitrobenzene at 25 °C

14.95

Solvent	Λ_0	$\lambda_0^-(\mathrm{NO_3}^-)$	$\frac{K_a}{\mathrm{dm^3 mol^{-1}}}$	
Solvent	S cm ² mol ⁻¹	S cm ² mol ⁻¹		
EtOH	46.2	25.65	$(1.26\pm0.21)\times10^{3}$	
$n ext{-} ext{PrOH}$	23.8	13.2	$(1.66\pm0.07)\times10^{4}$	
i-PrOH	23.6	12.3	$(1.22\pm0.14)\times10^{6}$	
$n ext{-BuOH}$	15.2	8.8	$(3.53\pm0.17)\times10^{4}$	
Me ₂ CO	200.7	120.1	$(2.63\pm0.01)\times10^{7}$	
MEK	147.7	86.0	$(3.48\pm0.23)\times10^{7}$	
$PhNO_2$	37.6	22.6	$(3.36\pm0.26)\times10^{6}$	

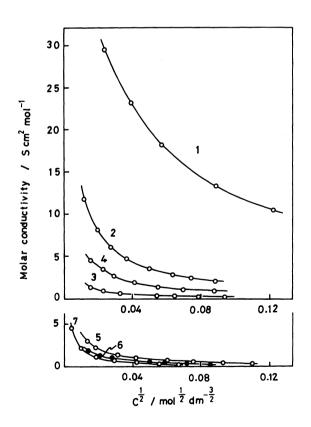


Fig. 1. Plots of the molar conductivity of [Ni(acac)-(N,N,N',N'-tmen)]NO₃ against the square root of the concentration in organic solvents at 25°C. 1, EtOH; 2, n-PrOH; 3, i-PrOH; 4, n-BuOH; 5, Me₂CO; 6, MEK; 7, PhNO₂.

Bjerrum's critical distance in each solvent. The mean K_a values of a series of experimental points are given in Table 4 together with the values of Λ_0 and $\lambda_0^-(NO_3^-)$.

 34 ± 5

Discussion

(A)[Ni(acac)(N,N,N',N'-tmen)]ClO₄. The following classification becomes feasible toward the color change of [Ni(acac)(N,N,N',N'-tmen)]ClO₄ in the solvents, as described in Eq. 1:

Class I (Me₂CO, MEK, MIBK, PhNO₂, and i-PrOH) Red

Class II (EtOH, n-PrOH, and n-BuOH) Green

This indicates that the nickel(II) chelate ion is mainly tmen)]+ for Class I and an octahedral [Ni(acac)- $(N,N,N',N'-tmen)(solvent)_2$ + for Class II.2) This can be confirmed from the mobility data shown in Fig. 2. Walden products $(\lambda_0^+ \cdot \eta)$ of [Ni(acac)(N,N,N',N'tmen)]+ should be larger than those of [Co(acac)2-(N,N,N',N'-tmen)]+ since the molal volume of the former is smaller than that of the latter due to a difference in the number of the ligand acac. This is the case for Class I, except for i-PrOH; the difference in $\lambda_0^+ \cdot \eta$ is particularly large in PhNO₂. For Class II, on the other hand, the opposite result is observed. In addition, the difference increases in the order EtOH< n-PrOH<n-BuOH.¹⁷⁾ This can not be explained in terms of coordination by one molecule, supporting

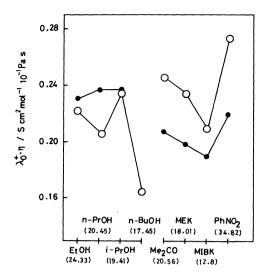


Fig. 2. Walden products of O, [Ni(acac)(N,N,N',N', tmen)]⁺ and \bullet , [Co(acac)₂(N,N,N',N'-tmen)]⁺ in organic solvents at 25 °C. The values in parentheses are the dielectric constant (ε) of each solvent.

coodination by two molecules in Eq. 1.

The transfer of a quadratic-planar [Ni(acac)(N,N,N',N'tmen)]+ to an octahedral [Ni(acac)(N,N,N',N'-tmen)-(solvent)₂]+ is influenced by solvent basicity.²⁾ The DN value, which is a measure of the basicity of a solvent, is 20 and 19.6 for EtOH and n-PrOH, respectively, suggesting that i-PrOH and n-BuOH have similar DN values (Table 2). Thus, although the configuration of the nickel(II) chelate cation in these solvents should be equal (Class II), the configuration in i-PrOH, which is quadratic-planar, is different from the result regarding primary alcohols. This may be due to a steric hindrance by branched methyl groups: The donor number, which was defined by Gutmann, is obtained from the solvation enthalpy of antimony pentachloride by the donor solvent in 1,2-dichloroethane. Therefore, it indicates the "bulk" donicity of the solvent and does not take into account the structural factor. However, $\lambda_0^+ \cdot \eta$ of the nickel(II) chelate ion in i-PrOH is compatible with that of the cobalt(III) chelate ion, suggesting that the solvation of the oxygen atom in acac (the nickel(II) chelate ion) by the OH proton occurs without steric hindrance.

The ketones do not interact with the nickel(II) ion, due to the steric hindrance, in analogy with *i*-PrOH. In addition, they have no solvation site to the nickel(II) chelate ion, resulting in an increase in mobility compared to the cobalt(III) chelate ion. However, the difference in $\lambda_0^+ \cdot \eta$ (Me₂CO=0.038, MEK=0.035, and MIBK=0.02) is small compared to that (0.054) in PhNO₂ which is inert in donicity, indicating the presence of a weak interaction between the ketones and the nickel(II) ion.²⁾ This is also confirmed from the fact that dimethyl sulfoxide (DN=29.8), which is very strong in donicity, coordi-

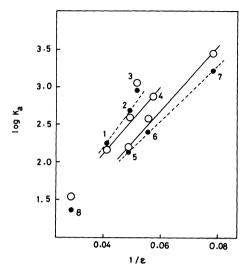


Fig. 3. Plots of log K_a with 1/ε for O, [Ni(acac)-(N,N,N',N'-tmen)]ClO₄ and ●, [Co(acac)₂(N,N,N',N'-tmen)]ClO₄ in organic solvents at 25°C.
1, EtOH; 2, n-PrOH; 3, i-PrOH; 4, n-BuOH; 5, Me₂CO; 6, MEK; 7, MIBK; 8, PhNO₂.

nates directly to the nickel(II) ion, although the geometry of the solvent is similar to the ketones.

Figure 3 shows that $\log K_a$ of [Ni(acac)(N,N,N',N'-tmen)]ClO₄, in analogy with those of octahedral complex [Co(acac)₂(N,N,N',N'-tmen)]ClO₄, increases with a decrease in the dielectric constant of the solvents (increase in $1/\varepsilon$). This is expected from the coulombic theory of ionic association,¹⁸⁾

$$\log K_{\rm a} = e^2/akT \cdot 1/\varepsilon + \log K_{\rm a}^{\circ}, \tag{7}$$

where a is the contact distance between the cation and the anion and other symbols (e, k, and T) have their usual meanings. K_a° contains the contribution to K_a for all factors, except for the long-range coulombic interaction. Ka is larger in the alcohols than in the ketones at the same dielectric constant. This larger K_a in the alcohols could be explained in terms of (1) diminution in the dielectric constant due to a breaking of the hydrogen-bonding structure in the vicinity of an ion pair and (2) a multiple-step association process occurring from the solvation of ClO₄⁻ by the alcohol molecules. This pattern is set up for other uni-univalent electrolytes such as [Co(acac)₂(en)]ClO₄ (en= ethylenediamine),3-5) and R₄NClO₄ (R: alkyl group (C=2-4)).⁷⁻⁹⁾ Moreover, the K_a values of [Ni(acac)-(N,N,N',N'-tmen) ClO₄ are not so much different from those of $[Co(acac)_2(N,N,N',N'-tmen)]ClO_4$. Thus, it is considered that $[Ni(acac)(N,N,N',N'-tmen)]ClO_4$ in the solvents behaves as a normal-type of uni-uni-valent electrolyte and that the nickel(II) ion does not interact with the ClO₄⁻ ion.

However, the K_a values of the nickel(II) chelate complex can be classified into two groups as described previously: (1) The K_a values of the nickel(II) complex

are larger than those of the cobalt(III) complex in the ketones, PhNO₂, and i-PrOH (Class I). (2) The reverse trend is obtained in EtOH, n-PrOH, and n-BuOH (Class II). Since the nickel(II) ion does not directly interact with the ClO₄⁻ ion, it seems that the classification can not be only attributed to the difference in the central metal ion {Ni(II) or Co(III)} and the number of the acac. Thus, it may be explained as follows: For Class I, since the nickel(II) chelate ion is present as a quadratic-planar ion, the entity is small compared to $[Co(acac)_2(N,N,N',N'-tmen)]^+$. suggests that K_a of $[Ni(acac)(N,N,N',N'-tmen)]ClO_4$ should be larger than that of [Co(acac)2(N,N,N',N'tmen) ClO₄. For Class II, on the other hand, the reverse trend may be obtained due to the large volume of $[Ni(acac)(N,N,N',N'-tmen)(alcohol)_2]^+$ compared with $[Co(acac)_2(N,N,N',N'-tmen)]^+$ (Fig. 2).

(B)[Ni(acac)(N,N,N',N'-tmen)]NO₃. The nitrate ion, as a bidentate ligand, can coordinate directly to [Ni(acac)(N,N,N',N'-tmen)]+ in organic solvents.²⁾ This behaviour is accounted for by two association processes, outer-sphere ionic association and the formation of an inner-sphere octahedral complex,

$$[\text{Ni}(\text{acac})(N,N,N',N'-\text{tmen})]^{+} + \text{NO}_{3}^{-} \xrightarrow{K_{al}}$$
$$[\text{Ni}(\text{acac})(N,N,N',N'-\text{tmen})]^{+} \cdot \text{NO}_{3}^{-} \xrightarrow{K_{al}}$$

$$[Ni(acac)(N,N,N',N'-tmen)(NO3)].$$
(8)

The observed association constant (K_a) can be shown to be equal to

$$K_a = K_{a1} \cdot K_{a2}. \tag{9}$$

Table 4 shows that (1) the K_a values of the nitrate complex are larger than those of the perchlorate complex and (2) may be conveniently classified into two groups; the K_a values in the ketones, PhNO₂, and i-PrOH are remarkably larger than those in EtOH, n-PrOH, and n-BuOH. This classification is in good agreement with the classification by the color change of [Ni(acac)(N,N,N',N'-tmen)]+ in each solvent, Classes I and II. For Class I, the nickel(II) chelate ion in Eq. 8 is present as a quadratic-planar chelate ion, resulting in an octahedral complex [Ni(acac)(N,N,N',N'-tmen)-(NO₃)]. On the other hand, for Class II the nickel(II) chelate ion is present as an octahedral chelate ion [Ni(acac)(N,N,N',N'-tmen)(alcohol)2], resulting in an octahedral complex [Ni(acac)(N,N,N',N'-tmen)(NO₃)] accompanied by a decoordination of two alcohol molecules from the nickel(II) ion. The coordination of anions is obtained for the copper complex in nitromethane: 1) [Cu(acac)(N,N,N',N'-tmen)]++ $X^- =$ [Cu(acac)(N,N,N',N'-tmen)(X)] (where $X^-=Cl^-$, Br^- , and SCN⁻). The formation constants are large compared to that from the coulombic theory of ionic association.

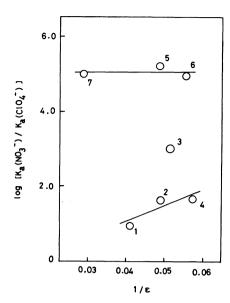


Fig. 4. The ratio of log K₄ of [Ni(acac)(N,N,N',N'-tmen)]NO₃ to [Ni(acac)(N,N,N',N'-tmen)]ClO₄ as a function of 1/ε in organic solvents at 25 °C. 1, EtOH; 2, n-PrOH; 3, i-PrOH; 4, n-BuOH; 5, Me₂CO; 6, MEK; 7, PhNO₂.

The K_{a1} value in Eq. 8 seems to be roughly equal to that of the perchlorate complex, since K_a for R_4NNO_3 is similar to that for R₄NClO₄ (from the coulombic theory of ionic association) and the ClO₄⁻ ion does not interact with the nickel(II) ion. Thus, K_{a2} can be reasonably estimated from Eq. 9. Figure 4 shows plots of $\log K_a(NO_3^-)/K_a(ClO_4^-)$, ($\approx K_{a2}$) vs. $1/\epsilon$. Similar K_{a2} values are obtained for Class I, indicating that coordination by solvent molecules is very weak for Class I, as discussed in a preceding section. difference between Classes I and II is ascribed to the energy of decoordination of two alcohol molecules and the desolvation of NO₃⁻ by the alcohol molecules with high acidities (AN, Table 2). It is considered that the data for i-PrOH support the solvation of the acac by 2-propanol melecules, as shown in Fig. 2.

References

- 1) Y. Fukuda, H. Kimura, and K. Sone, *Bull. Chem. Soc. Jpn.*, **55**, 3738 (1982).
- 2) Y. Fukuda and K. Sone, J. Inorg. Nucl. Chem., **34**, 2315 (1972).
 - 3) K. Ito, Inorg. Chem., 22, 2872 (1983).
- 4) K. Ito, E. Iwamoto, S. Suehisa, H. Isono, and Y. Yamamoto, *Bull. Chem. Soc. Jpn.*, **59**, 3841 (1986).
- 5) K. Ito, H. Isono, E. Iwamoto, and Y. Yamamoto, *Bull. Chem. Soc. Jpn.*, **61**, 4077 (1988).
- 6) a) R. M. Fuoss and K. L. Hsia, *Proc. Natl. Acad. Sci.*, U.S.A., **57**, 1550 (1967); b) Fernández-Prini, *Trans. Faraday Soc.*, **65**, 3311 (1969).
- 7) D. F. Evans and P. Gardam, J. Phys. Chem., 72, 3281 (1968).
- 8) S. M. A. Matesich, J. A. Nadas, and D. F. Evans, J. Phys. Chem., 74, 4568 (1970).

- 9) D. F. Evans and P. Gardam, J. Phys. Chem., 73, 158 (1969).
- 10) D. F. Evans, J. Thomas, J. A. Nadas, and S. M. A. Matesich, J. Phys. Chem., 75, 1714 (1971).
- 11) S. R. C. Hughes and D. H. Price, *J. Chem. Soc. A*, **1967** 1093.
- 12) C. R. Witschonke and C. A. Kraus, J. Am. Chem. Soc., **69**, 2472 (1947).
- 13) V. Gutmann, "The Donor-Acceptor Approach to Molecular Interactions," Plenum Press, New York (1978).
- 14) M. Spiro, "Physical Chemistry of Organic Solvent Systems," ed. by A. K. Covington and T. Dickson, Plenum Press, London (1973), Chap. 5.
- 15) M. B. Reynolds and C. A. Kraus, J. Am. Chem. Soc., 70, 1709 (1948).
- 16) Since a sequence of λ_0^- in the methanol and EtOH is

- Cl⁻<Br⁻<NO₃⁻<I⁻<ClO₄⁻ (Ref. 14), λ_0^- (NO₃⁻) in *n*-PrOH, *i*-PrOH, and *n*-BuOH were estimated from λ_0^- of other anions (Refs. 7—9). Similarly, λ_0^- (NO₃⁻) in MEK was estimated from λ_0^- (NO₃⁻) in Me₂CO (Ref. 15) and PhNO₂ (Ref. 12), and λ_0^- of other anions in Me₂CO, MEK, and PhNO₂ (Refs. 10—12).
- 17) The $\lambda_0^+ \cdot \eta$ value of $[\text{Co}(\text{acac})_2(N,N,N',N'-\text{tmen})]^+$ in n-BuOH, which is not available due to limited solubility may be similar to the values in EtOH, n-PrOH, i-PrOH, since the chelate ion have no specific site for solvation by the alcohols. This agrees well with the data of the bulky tetraalkylammonium ions such as Bu_4N^+ and $(i\text{-C}_5\text{H}_{11})_3\text{-BuN}^+$ which indicate similar $\lambda_0^+ \cdot \eta$ values (Refs. 7—9).
- 18) a) W. R. Gilkerson, J. Chem. Phys., 25, 1199 (1956); b) R. M. Fuoss, J. Am. Chem. Soc., 80, 5059 (1958).